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SUMMARY 

In problems such as the computation of incompressible flows with moving boundaries, it may be necessary 
to solve Poisson’s equation on a large sequence of related grids. In this paper the LU decomposition of the 
matrix A, representing Poisson’s equation discretized on one grid is used to efficiently obtain an approxi- 
mate solution on a perturbation of that grid. Instead of doing an LU decomposition of the new matrix A, the 
RHS is perturbed by a Taylor expansion of A - ’  about A,. Each term in the resulting series requires one 
‘backsolve’ using the original LU. 

Tests using Laplace’s equation on a square/rectangle deformation look promising; three and seven 
correction terms for deformations of 20% and 40% respectively yielded better than 1% accuracy. 

As another test, Poisson’s equation was solved in an ellipse (fully developed flow in a duct) of aspect ratio 
2/3 by perturbing about a circle; one correction term yielded better than 1 YO accuracy. 

Envisioned applications other than the computation of unsteady incompressible flow include: three- 
dimensional parabolic problems in tubes of varying cross-section, use of ‘elimination’ techniques other than 
LU decomposition, and the solution of PDEs other than Poisson’s equation. 
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1. INTRODUCTION 

An important component of most methods for the computation of unsteady incompressible flow 
is the efficient ‘Poisson solver’. One such method which is good for problems with fixed grids is 
that of Dwyer.’ This method uses an LU decomposition; the L and U matrices are computed 
before time marching begins and are used over and over again in the ‘backsolve’ at each time step. 
The purpose of the present paper is to introduce a simple and efficient systematic procedure 
capable of extending a method such as Dwyer’s to problems with moderately deforming (e.g. 
time-varying) grids. 

In the sections which follow, it will be assumed that we are using an LU decomposition to solve 
the system of simultaneous linear algebraic equations generated by finite differencing Poisson’s or 
Laplace’s equation on a large sequence of ‘related’ simply connected regions. Potential gen- 
eralizations to other problems will be discussed in the final section. 
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2. DERIVATION O F  THE METHOD 

Suppose that we have computed and saved the matrices Lo and U,, the LU decomposition of the 
matrix A, representing the finite differencing of Poisson’s equation on some ‘base’ grid. We now 
wish to solve Poisson’s equation on a large sequence of ‘related’ grids. By ‘related’ we mean: 

1. All the grids have the same number and topology of grid points. 
2. All the grids are generated from ‘moderate’ deformations of the base grid; what is meant by 

‘moderate’ will become clearer from the examples in the next section. 

The problem at hand can be written as 

Au = f. 

It will now be shown that this problem is equivalent to 

m 

A , u = f +  1 fi, 
i =  1 

where the evaluation of each requires one backsolve using the LU decomposition of A,. 
First we rewrite (1) as 

u = A-’u. (3) 

A ’ z A - A O ,  (4) 

Next we perturb A about A,, i.e. we introduce 

where it is assumed that because the grid deformation is moderate, 11 A‘ A; )I -g 1. Therefore (3) 
becomes 

( 5 )  u = (A, + A ) - ’ f  =((I + AA,’)A,)-’f  = A a 1 ( I  + A’A;’)-’f. 

We next carry out a Taylor expansion of the term in parentheses, assuming that A‘A;’ is 
within the radius of convergence of the expansion; this yields 

U = A ~ ~ ( I - A ’ A ~ ~ + ( A A , ’ ) ~ -  . . . ) f .  (6) 
Finally, multiplying through by A, and defining some new terms, we obtain 

where 

a, 

A o u = f + A ’ ( - V l + v , -  . . . ) = f +  1 fi,  
i =  1 

A,v, = f  

A,vi= A’vi- 1 ,  i = 2,3, . . . , (W 
and fi = ( -  lyA’vi. 

It is thereby seen that one may use the LU decomposition of A, in place of that of A, provided 
that one modifies the right-hand side of the equation by adding on a series of ‘correction’ terms, 
each of which requires for its evaluation one backsolve using the original LU decomposition. 

Use of a truncated version of (7) to accurately and efficiently approximate (1) relies on the 
following conditions to hold 

1. The number of vi required should be small, i.e. (1 A‘vi 11 < 1 at small i, to allow for early 
truncation of the infinite series in (7). 
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2. The work required to solve (8a) and all of the required (89 is significantly less than that 

For the first condition to hold, the norm of A‘A; must be small. For the examples presented 
in the following section, it is assumed that this norm is roughly O(E), where E is the parameter 
characterizing the grid deformation. 

As for the second condition, the operation count for the LU factorization can be at  least an 
order of magnitude higher than that for the backsolve; specific ratios for different grid sizes are 
presented below. 

In the following section, two sample problems are used to test the validity of the method. 

required to calculate the LU decomposition of A. 

3. EXAMPLES 

Solution of Laplace’s equation in a square deformed into a rectangle 

Consider the situation depicted in Figure 1. There, a unit square has been ‘squashed’ into a 
rectangle by lengthening the vertical sides to 1 + E  and shortening the horizontal ones to 1 - c .  

The finite difference solution of Laplace’s equation on the rectangle, subject to the Dirichlet 
boundary conditions u = sin nxcosh ny, is carried out as follows: 

1. The square is overlaid with a uniform grid; the standard five-point finite difference stencil is 
applied, and each resulting equation is normalized so as to make the diagonal coefficient 
equal to I ,  yielding the matrix A,. 

2. The LU decomposition of A, is computed and stored. 
3. The rectangle is overlaid with a uniform grid for each direction; the standard five-point finite 

difference stencil is applied, and each resulting equation is normalized so as to make the 
diagonal coefficient equal to 1, yielding the matrix A. 

4. The matrix A’ = A -A, is formed and stored. 
5. (8) and (7) are solved to yield the approximate solution for the rectangle. 

We note that steps 1 and 2 are independent of the degree of deformation, E, and need be done 
only once; steps 3-5 must be repeated for each new rectangular grid (i.e. for each new E).  

Given the above ‘algorithm’ and the structure of(7) and (8), it is clear that in order to save 
storage in a computer code, A may be overwritten by A‘, since A is used only to get A‘. On the 
other hand, in general, it is necessary to store A, and not overwrite it with LOU,, since A, is 
needed for the computation of A‘ = A - A, on each new grid. Of course, since A, is very sparse (as 
is A’), the additional storage required is less than that already required by LOU,. 

Figure 1. Square deformed into rectangle: geometry 
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The above procedure was tested for E = 0.2 with 5’, 1 l’, 21’ and 41’ grid points and for E = 0.40 
with 5’ and 41’ grid points. 

The computations were carried out on a CRAY-XMP/48, using the NAG Mark 11 sparse 
matrix routines’ FOlBRF or F02BSF and F04AXF for the LU decomposition and backsolve 
respectively. 

Figure 2 shows the behaviour of the maximum percentage error, i.e. max{ I [solution of (1)-  
solution of (7)]/solution of (1)1), as a function of the number of terms retained in the series on the 
right-hand side of(7). It is seen that better than 1 %  accuracy is obtained after only three and 
seven ‘corrections’ for E = 0-20 and 0.40 respectively. Going to four and eleven corrections 
improves the accuracy to better than 0.10%. 
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Figure 2(a). Convergence of rectangle/square problem with 20% deformation for different size grids 
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Figure 2(b). Convergence of rectangle/square problem with 40% deformation for different size grids 
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As an example of how the solution improves with an increased number of correction terms on 
right-hand side of (7), Figure 3 shows a plot of u(x,  y) at x = 0.06 (where the error with no iterative 
correction was near maximum) from the 41’ grid with E = 0.40 for selected numbers of correction 
terms. 

What has been gained by using the perturbation scheme instead of the LU factorization of A? 
Figure4 attempts to answer this question. On very coarse grids the answer is: very little. 
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Figure 3. Rectangle/square problem with 40% deformation and 41’ grid solution as a function of y at fixed x (0.06) for 
different numbers of iterative corrections 

grid size 

Figure 4. Ratio of CPU time for LU decomposition/backsoIve as a function of grid size 
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However, on, say, the 41’ grid it is seen that the LU decomposition requires between 26 and 500 
times (using subroutines FOIBSF and FOIBRF respectively) as much CPU time as does each 
backsolve. It should be noted at this point that FOlBRF does the LU decomposition completely 
from scratch, while FOlBSF utilizes the pivoting ‘strategy’ already developed and saved by 
FOIBRF. Of course, in order to use FOlBSF, one must first use FOIBRF. Furthermore, it turns 
out that the use of FOlBSF is limited by the size of E.  For example, it was found that on the 41’ 
grid, one could not use F01 BSF for E > 0.125. So, if for example we consider the case of E = 0-40 on 
the 41’ grid with 1 O/O accuracy (which is often reasonable, as evident from Figure 3), we find that 
the perturbation scheme requires less than 2% of the CPU time required by the full LU 
decomposition scheme (FOIBRF). For E small enough to use FOlBSF, if we use the perturbation 
scheme instead, two iterations suffice for 1 %  accuracy; this requires less than 15% of the 
computation time of FOlBSF. 

From a first glance at Figures 2(a) and 2(b), one may be concerned over the decreased 
convergence rate as the grid is made finer. However, from Figure 2(a) one also notes that the 1 12, 
21 and 41 ’ curves almost coincide, implying that an asymptote has been reached and indicating 
that the curve for, say, the 41’ grid gives a good approximation for the convergence rate for 
arbitrarily fine grids (for c fixed at 0.20; spot checks for c = 0.40 on the 11’ and 21’ grids compared 
with the results on the 41’ grid indicate a very similar trend). I t  is also apparent from Figure 2 
that the convergence rate is roughly linear in E.  

To obtain a somewhat different perspective on the convergence rate as a function of grid size 
and c, the spectral radius p of A’A; was examined for several coarse grids and values of E.  Since 
A’A; is the effective numerical perturbation parameter, it is assumed that 11 A‘A; ’ 1 1 ,  and hence 
p(A’A;’), should give a reasonable measure of the convergence rate. The results of this set of 
numerical experiments are shown in Figures 5 and 6. From Figure 5, where p is plotted against 
the order of A resulting from the interior grid points (the boundary points are ignored here 
because of the Dirichlet boundary conditions), we speculate that p does indeed reach a ‘reason- 
able’ limit as the number of grid points is increased. (To keep down the computational cost of this 
study, the finest grid considered was the 1 1 ’ one; fortunately, the curves for p seems to level off by 
this range of grid fineness.) 
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Figure 5 .  Spectral density of A’A, ’ as a function of the order of A 
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Figure 6. Spectral density of A'A, ' as a function of grid deformation 

Figure 6 implies that for a given grid, the spectral radius of A'A, ' increases less than linearly as 
the grid deformation E is increased. The slight discrepancy between this result and a comparison 
of Figures 2(a) and 2(b) for the 5 2  and 41' grids may be due to the incomplete correlation between 
spectral radius and convergence rate, especially as represented by the percentage error 'norm' 
used here. 

Velocity distribution for  pow in a circular duct deformed into an elliptical one 

Fully developed laminar flow of a Newtonian fluid in a duct of hydraulic radius h is governed 
by 

v 2 u  = - 1, (9) 
where u is thc axial velocity non-dimensionalized by h2(  - dp/dx)/p.j 

We have considered the solution of (9) for an elliptical duct by perturbing about a unit circular 
one. The solution procedure is analogous to that of the rectangle/square case. The 21 radially 
stretched grids are shown in Figure 7; the semi-minor and semi-major axes of the ellipse are I - E 

and 1 + E respectively, with E = 0.20 in this case. The elliptical grid is non-orthogonal, requiring a 
nine-point stencil. For convenience, the computational domains were restricted to one quarter of 
the ellipse/circle, and Dirichlet boundary conditions were furnished by applying the exact 
solution at the computational boundaries (including the inner boundary, set at about r = 0.10 for 
computational convenience). The percentage error reduction versus number of correction terms is 
given in Figure 8. In this case it is seen that 1 YO and 0.10% accuracy are achieved with only one 
and three corrections respectively. 

I t  was found possible to raise E to as high as 0.60 at least, though for this much deformation, ten 
correction terms were required for 1 YO accuracy. 

The ellipse/circle problem with 20% deformation was also tested with Laplace's equation and 
boundary conditions u = rcos8. Two and three corrections were required for 19'0 and 0.1 % 
accuracy respectively, indicating a mild dependence of convergence on the exact form of the 
right-hand side of ( I ) .  
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Figure 7. Geometry and grids for ellipse/circle problem with 20% deformation 
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Figure 8. Convergence of ellipse/circle problem with 20% deformation 

4. DISCUSSION, POTENTIAL APPLICATIONS AND CONCLUSIONS 

It has been seen from both examples attempted that it is possible to efficiently compute the 
solution of Poisson’s equation on one grid by using the LU decomposition of the matrix from a 
‘related’ grid and by perturbing the right-hand side appropriately. 

We now point out some potential applications of the method. 

1. In the computation of unsteady incompressible flow with moving boundaries, the coeffic- 
ients of A are functions of time; if 11 (A( t )  - A ) A - ’  / I r n a x  is not too large (where A is the matrix 
due to the ‘mean’ grid), then the perturbation method with a small number of correction 
terms may prove to be an efficient way of extending existing methods for problems with 
fixed grids. 
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2. Dwyer' mentions the use of the reapplication of a single LU decomposition to three- 
dimensional flows in tubes of constant cross-section; the perturbation approach may extend 
this method to problems where the cross-section varies. 

3. While we have considered only LU decomposition, it may be possible to effectively use the 
perturbation approach with other Poisson solvers. For example, if one has to solve 
Poisson's equation on a grid which is moderately different from one on which a fast FFT 
solver could be used, then the problem could be broken down into a short perturbation 
series of such easy-to-solve FFT problems. 

4. The method may be applicable to algorithms for partial differential equations other than 
Poisson's, e.g.Merkle's4 and Guerra's5 low-Mach-number Euler equation solvers. In fact, 
any problem requiring the repeated solution of a linear system of equations with 'moderate' 
variation in the elements of the system matrix may be a candidate for the present method. 
The present method may therefore prove useful in the solution of problems such as 'panel' 
methods in aerodynamics when the panels move a bit (e.g. flap deflection), and in iterative 
methods for mildly non-linear problems, where at each iteration the equations are 
linearized, yielding a matrix moderately different from iteration to iteration. 
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